10.3 Logarithmic Functions

I. What is a Logarithmic Function?

What is the inverse operation of...

Algebra

Operation	Inverse operation	<i>Example.</i> Solve for <i>x</i>
Addition		5 = x + 3
Multiplication		12 = 3x
Squaring		$121 = x^2$
Exponential		$100000 = 10^x$

<u>Definition</u> - Logarithmic Function: For x > 0 and b > 0, $b \neq 1$, $b^y = x$ is equivalent to $y = \log_b x$ This means that finding log, x is equivalent to ask

This means that finding $\log_b x$ is equivalent to asking the question: "What power of base b is needed to get the value x?"

Exponential Form: $b^y = x$ Logarithmic Form: $y = log_b x$

Key point: The logarithm, y, is the exponent. The logarithmic form allows us to isolate the exponent.

Changing forms

Example 1: Write each equation in its equivalent form and evaluate the variable.

a. $4 = \log_2 x$ b. $3 = \log_b 125$ c. $y = \log_2 16$

Example 2: Write each equation in its equivalent logarithmic form.

a. $10^2 = x$ b. $b^3 = 64$ c. $e^y = 23$

Evaluation Logarithms

Example 3: Evaluate the logarithm by rewriting it in exponential form.

a.
$$\log_2 32$$
 b. $\log_5 \left(\frac{1}{25}\right)$ c. $\log_{64} 8$

II. Basic Logarithmic Properties

Basic Logarithmic Properties Involving 1

1. $\log_b b = 1$

2. $\log_b 1 = 0$

<u>Example 4</u>: Evaluate

a. $\log_{123} 123$ b.	log ₁₉ 1
------------------------	---------------------

Inverse Properties of Logarithms

For b > 0 and $b \neq 1$, $1 \quad \log b^x = x$

1.
$$\log_b b^x = x$$

2. $b^{\log_b x} = x$

Example 5 : Evaluate

a.	$\log_7 7^5$	b.	8 ^{10g₈9}

Common Logarithms

Definition: A common logarithm is a base 10 logarithm.

 $f(x) = \log_{10} x$ is commonly written as $f(x) = \log x$

Example6: Compute each of the following (no calculator for *a* and *b*.)

a.	log 100000	b.	$\log\left(\frac{1}{100}\right)$	С.	$\log\left(\frac{3}{7}\right)$	d.	log(-5)
----	------------	----	----------------------------------	----	--------------------------------	----	---------

Solving Basic Logarithmic Equations

To solve a Logarithmic equation, convert to an exponential equation and solve.

Example Solve these equations

a. $\log_3(x+1) = 4$ b. $\log(3x+10) = 2$

III. Graphs of Logarithmic Functions

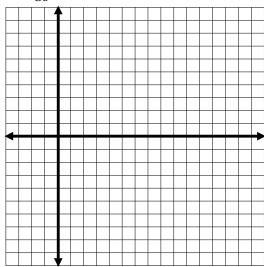
<u>Remember...</u> The inverse of a function reverses the *x* and *y* coordinates.

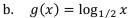
<u>*Example 7:*</u> Graph $g(x) = \log_2 x$ and its inverse on the same axes.

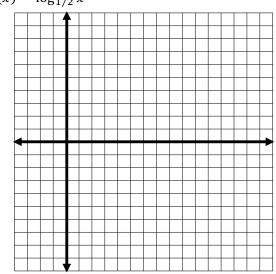
- 1. Write the inverse, $g^{-1}(x)$
- 2. Make a table of values for $g^{-1}(x)$:

x			
$g^{-1}(x) =$			

3. Reverse the domain and range values from the table to find the points of


x																							
$g^{-1}(x) =$																							
																		_					
																		_					
																		_					
	L.																			+			
																		_					
																		_					
																		_					
																		_					


Steps for graphing a simple logarithmic function:


- 1. Write the function in terms of *x* and *y*. (e.g. $y = \log_b x$)
- 2. Change the function into its equivalent exponential form for x as a function of y (e.g. $x = b^y$)
- 3. Find (*x*, *y*) points for this exponential function in "reverse".
- 4. Graph these points

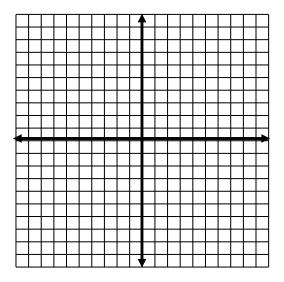
Example Graph by hand.

a. $f(x) = \log_3 x$

<u>Characteristics of Logarithmic Functions of the form</u> $F(x) = log_b x$

- Domain: All positive real numbers (0,∞). Range: All Real numbers (-∞,∞)
- 2. All logarithmic functions of the form $f(x) = \log_b x$ pass through the point (1,0)
- 3. If b > 1, the graph goes up to the right and is an *increasing* function.
- 4. If 0 < b < 1, the graph goes down to the right and is a *decreasing* function.
- 5. The graph of $f(x) = \log_b x$ approaches but does not touch the *y*-axis. The y-axis or x=0 is a vertical asymptote.

Natural Logarithms


<u>Definition</u>: A natural logarithm is base *e*.

$f(x) = log_e x$ is commonly written $f(x) = \ln x$.

<u>*Example*</u> Compute the natural logarithms using your calculator, then check your answer using e^x .

a. $\ln 9$ b. $\ln 5$ c. $\frac{\ln(2)}{3}$

Example: Use your calculator to graph $h(x) = \ln x$ and sketch it here.

Example: Sketch a graph of the function and find the domain and the range

a. $f(x) = \ln x$ b. $g(x) = \ln(x+5)$

b. $h(x) = \ln x + 5$